Locally repairable codes have become a key instrument in large-scale distributed storage systems. This paper focuses on the construction of locally repairable codes with $(r,\delta)$-locality that achieve the equality in the Singleton-type bound. We use matrix-product codes to propose two infinite families of $q$-ary optimal $(r,\delta)$ locally repairable codes of lengths up to $q^2+q$. The ingredients in the matrix-product codes are either linear maximum distance separable codes or optimal locally repairable codes of small lengths. Further analysis and refinement yield a construction of another infinite family of optimal $(r,\delta)$ locally repairable codes. The codes in this third family have unbounded lengths not divisible by $(r+\delta-1)$. The three families of optimal $(r,\delta)$ locally repairable codes constructed here are new. Previously constructed codes in the literature have not covered the same sets of parameters. Our construction proposals are flexible since one can easily vary $r$ and $\delta$ to come up with particular parameters that can suit numerous scenarios.
翻译:在大规模分布式储存系统中,可在当地修理的编码已成为一个关键工具。本文件侧重于用美元(r,\delta)和美元(of)建造可在当地修理的编码,以实现单一吨型编码中的平等。我们使用矩阵产品编码来提议两个无限的单位,即美元-全方位最佳的(r,\delta)美元(r,\delta),当地可修理的长度编码最多达q%2+q美元。矩阵产品编码中的成分要么是线性最大距离可分离的编码,要么是最佳的当地小长度可修理的编码。进一步的分析和改进产生了另一个无限的单位,即最佳的(r,\delta)美元($,\delta)当地可修理的编码。我们使用矩阵产品编码提出了两个无限制的长度,但美元(r,\delta)美元(odelta)美元不能被忽略。在这里建造的三套最佳(r,\delta)当地可修理的编码是新的。文献中原先建造的编码没有包括相同的参数。我们的建筑提案很灵活,因为其中一种可以轻易地将美元和美元/$\\\delta$。