Bayesian deep learning approaches that allow uncertainty estimation for regression problems often converge slowly and yield poorly calibrated uncertainty estimates that can not be effectively used for quantification. Recently proposed post hoc calibration techniques are seldom applicable to regression problems and often add overhead to an already slow model training phase. This work presents a fast calibrated uncertainty estimation method for regression tasks, called posterior annealing, that consistently improves the convergence of deep regression models and yields calibrated uncertainty without any post hoc calibration phase. Unlike previous methods for calibrated uncertainty in regression that focus only on low-dimensional regression problems, our method works well on a wide spectrum of regression problems. Our empirical analysis shows that our approach is generalizable to various network architectures including, multilayer perceptrons, 1D/2D convolutional networks, and graph neural networks, on five vastly diverse tasks, i.e., chaotic particle trajectory denoising, physical property prediction of molecules using 3D atomistic representation, natural image super-resolution, and medical image translation using MRI images.
翻译:允许对回归问题进行不确定性估计的贝叶斯深层学习方法往往会缓慢地聚集在一起,并得出无法有效用于量化的错误的不确定性估计。最近提出的后特设校准技术很少适用于回归问题,往往会增加一个已经很慢的模型培训阶段的间接费用。这项工作为回归任务提供了一个快速校准的不确定性估计方法,称为后尾线线,它不断改进深回归模型的趋同和产出经校准的不确定性,而没有任何后特设校准阶段。与以往只侧重于低维回归问题的经校准的回归不确定性方法不同,我们的方法在一系列广泛的回归问题上运作良好。我们的经验分析表明,我们的方法可以广泛适用于各种网络结构,包括多层透镜、1D/2D进化网络和图形神经网络,涉及五大不同的任务,即混乱的粒子轨迹分解、利用3D原子代表的分子物理属性预测、天然图像超分辨率以及使用MRI图像的医疗图像转换。