Simulating discontinuities is a long standing problem especially for shock waves with strong nonlinear feather. Despite being a promising method, the recently developed physics-informed neural network (PINN) is still weak for calculating discontinuities compared with traditional shock-capturing methods. In this paper, we intend to improve the shock-capturing ability of the PINN. The primary strategy of this work is to weaken the expression of the network near discontinuities by adding a gradient-weight into the governing equations locally at each residual point. This strategy allows the network to focus on training smooth parts of the solutions. Then, automatically affected by the compressible property near shock waves, a sharp discontinuity appears with wrong inside shock transition-points compressed into well-trained smooth regions as passive particles. We study the solutions of one-dimensional Burgers equation and one- and two-dimensional Euler equations. Compared with the traditional high-order WENO-Z method in numerical examples, the proposed method can substantially improve discontinuity computing.
翻译:模拟不连续是一个长期存在的问题,特别是对于具有强大非线性羽毛的冲击波而言。 尽管这是一个很有希望的方法,但最近开发的物理知情神经网络(PINN)在与传统的冲击捕捉方法相比计算不连续方面仍然薄弱。 在本文中,我们打算提高PINN的冲击捕捉能力。 这项工作的主要战略是通过在每个剩余点对当地治理方程式增加一个渐变重量来削弱网络接近不连续的表达方式。 这一战略使网络能够侧重于对解决方案的顺利部分进行培训。 然后,由于受到靠近冲击波的压缩特性的自动影响,在冲击波中出现急剧不连续的情况,其内部冲击过渡点被压缩到作为被动粒子的训练有素的光滑区域。 我们研究单维汉堡方程式和一维和二维电动方程式的解决方案。 与数字实例中传统的高阶WNO-Z方法相比,拟议方法可以大大改进不连续计算。