Chain-of-Thought Prompting (CoT) reinforces the reasoning capabilities of Large Language Models (LLMs) through the generation of intermediate rationales. However, these enhancements predominantly benefit large-scale models, leaving small LMs without significant performance improvements when directly applying CoT. Despite the advanced reasoning capabilities of LLMs, CoT relies primarily on their pre-trained internal knowledge. The external knowledge that is previously unknown to the model remains unexploited. This omission becomes pronounced in tasks such as stance detection, where the external background knowledge plays a pivotal role. Additionally, the large-scale architecture of LLMs inevitably present efficiency challenges during deployment. To address these challenges, we introduce the Ladder-of-Thought (LoT) for stance detection. Grounded in a dual-phase Cascaded Optimization framework, LoT directs the model to incorporate high-quality external knowledge, enhancing the intermediate rationales it generates. These bolstered rationales subsequently serve as the foundation for more precise predictions - akin to how a ladder facilitates reaching elevated goals. LoT achieves a balance between efficiency and accuracy, making it an adaptable and efficient framework for stance detection. Our empirical evaluations underscore LoT's effectiveness, marking a 16% improvement over ChatGPT and a 10% enhancement compared to ChatGPT with CoT.
翻译:暂无翻译