The long-tailed class distribution in visual recognition tasks poses great challenges for neural networks on how to handle the biased predictions between head and tail classes, i.e., the model tends to classify tail classes as head classes. While existing research focused on data resampling and loss function engineering, in this paper, we take a different perspective: the classification margins. We study the relationship between the margins and logits (classification scores) and empirically observe the biased margins and the biased logits are positively correlated. We propose MARC, a simple yet effective MARgin Calibration function to dynamically calibrate the biased margins for unbiased logits. We validate MARC through extensive experiments on common long-tailed benchmarks including CIFAR-LT, ImageNet-LT, Places-LT, and iNaturalist-LT. Experimental results demonstrate that our MARC achieves favorable results on these benchmarks. In addition, MARC is extremely easy to implement with just three lines of code. We hope this simple method will motivate people to rethink the biased margins and biased logits in long-tailed visual recognition.
翻译:在视觉识别任务中,长期的分类分布给神经网络处理头类和尾类之间偏差预测带来了巨大挑战,即模型倾向于将尾类分类为头类。虽然现有研究侧重于数据再抽样和损失功能工程,但在本文中,我们采取了不同的观点:分类边距。我们研究了边际和日志之间的关系(分类分数),从经验上观察有偏差和有偏差的日志是正面的。我们建议MARC,这是一个简单而有效的MARC,一个简单而有效的MARGIN校准功能,能动态地校准无偏倚的日边际。我们通过对共同的长期基准的广泛实验,包括CIFAR-LT、图像网-LT、Places-LT和iNatalist-LT进行验证。实验结果显示,我们的MRC在这些基准上取得了有利的结果。此外,MRC非常容易用三行代码执行。我们希望这一简单的方法能激励人们重新思考有偏差和有偏差的日边径的目识别。