Transfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop SEAL-Shap, an efficient source valuation framework for quantifying the usefulness of the sources (e.g., domains/languages) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity.


翻译:将数据丰富来源培训的转让学习模式应用于低资源目标的转让学习模式已在自然语言处理中得到广泛应用。然而,在培训多种来源的转让模式时,并非所有来源都对目标同样有用。为了更好地转让模式,必须了解来源的价值。在本文件中,我们开发了SEAL-Shap,这是一个高效的来源估值框架,用于量化来源(如域/语文)在基于Shapley 价值方法的转让学习中的用处。关于跨域和跨语文转让的实验和全面分析表明,我们的框架不仅在选择有用的转让来源方面有效,而且源值与直观来源目标相似。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
5+阅读 · 2018年9月11日
VIP会员
相关VIP内容
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员