Recently, Rissanen et al., (2022) have presented a new type of diffusion process for generative modeling based on heat dissipation, or blurring, as an alternative to isotropic Gaussian diffusion. Here, we show that blurring can equivalently be defined through a Gaussian diffusion process with non-isotropic noise. In making this connection, we bridge the gap between inverse heat dissipation and denoising diffusion, and we shed light on the inductive bias that results from this modeling choice. Finally, we propose a generalized class of diffusion models that offers the best of both standard Gaussian denoising diffusion and inverse heat dissipation, which we call Blurring Diffusion Models.
翻译:最近,Rissanen等人(2022年)提出了一种新型的基于热散散或模糊的基因模型传播过程,以替代异热带高斯扩散。 我们在这里显示,模糊可以通过高斯扩散过程和非异地噪音来同等界定。 在建立这一联系时,我们缩小了反热散散与非非异地扩散之间的差距,我们揭示了这一模型选择的诱导偏差。 最后,我们提出了一种通用的传播模式,它提供了高斯标准消散扩散和反热消散的最好方法,我们称之为“模糊分解模型 ” 。