Response-adaptive (RA) designs of clinical trials allow targeting a given objective by skewing the allocation of participants to treatments based on observed outcomes. RA designs face greater regulatory scrutiny due to potential type I error inflation, which limits their uptake in practice. Existing approaches to type I error control either only work for specific designs, have a risk of Monte Carlo/approximation error, are conservative, or computationally intractable. We develop a general and computationally tractable approach for exact analysis in two-arm RA designs with binary outcomes. We use the approach to construct exact tests applicable to designs that use either randomized or deterministic RA procedures, allowing for complexities such as delayed outcomes, early stopping or allocation of participants in blocks. Our efficient forward recursion implementation allows for testing of two-arm trials with 1,000 participants on a standard computer. Through an illustrative computational study of trials using randomized dynamic programming we show that, contrary to what is known for equal allocation, a conditional exact test has, almost uniformly, higher power than the unconditional test. Two real-world trials with the above-mentioned complexities are re-analyzed to demonstrate the value of our approach in controlling type I error and/or improving the statistical power.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员