Source analysis of Electroencephalography (EEG) data requires the computation of the scalp potential induced by current sources in the brain. This so-called EEG forward problem is based on an accurate estimation of the volume conduction effects in the human head, represented by a partial differential equation which can be solved using the finite element method (FEM). FEM offers flexibility when modeling anisotropic tissue conductivities but requires a volumetric discretization, a mesh, of the head domain. Structured hexahedral meshes are easy to create in an automatic fashion, while tetrahedral meshes are better suited to model curved geometries. Tetrahedral meshes thus offer better accuracy, but are more difficult to create. Methods: We introduce CutFEM for EEG forward simulations to integrate the strengths of hexahedra and tetrahedra. It belongs to the family of unfitted finite element methods, decoupling mesh and geometry representation. Following a description of the method, we will employ CutFEM in both controlled spherical scenarios and the reconstruction of somatosensory evoked potentials. Results: CutFEM outperforms competing FEM approaches with regard to numerical accuracy, memory consumption and computational speed while being able to mesh arbitrarily touching compartments. Conclusion: CutFEM balances numerical accuracy, computational efficiency and a smooth approximation of complex geometries that has previously not been available in FEM-based EEG forward modeling.
翻译:电子脑分析( EEG) 数据源的分析要求计算大脑中当前源源引发的头皮潜力。 这个所谓的 EEG 前进问题是基于对人体头部体积导量效应的准确估计, 其代表的是一个部分差异方程式, 可以通过有限元素法( FEM) 加以解决。 FEM 在模拟厌食组织行为能力时提供了灵活性,但需要将主域的体积分解、 网目、 体积分解。 结构化六相间衣很容易自动生成, 而四相间衣则更适合模拟曲线形形形形色色。 Tetrahedal meshes因此提供了更好的准确性, 但更难创建。 方法: 我们为 EEEG 引入了 CutFEM 远端模拟, 以整合六经体形组织和四向导体的强力。 它属于不相宜的耐用量性定型元素方法、 分解型模和几何表示。 在描述该方法后, 我们将使用 CutFFEMEM 的外形外形外观和对等结构的重建, 直径直径直径直径直径直径,, 和直径的直径直径直径分析, 。 结果: 和直径的计算, 直径对等的计算, 和直径直径直径直径的计算, 直径向, 直径向, 直到直到直径向的计算。结果, 。 。 。 。 直径,直径, 直到直到直到,直径,直到,直径,直径,直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直