Human beings learn and accumulate hierarchical knowledge over their lifetime. This knowledge is associated with previous concepts for consolidation and hierarchical construction. However, current incremental learning methods lack the ability to build a concept hierarchy by associating new concepts to old ones. A more realistic setting tackling this problem is referred to as Incremental Implicitly-Refined Classification (IIRC), which simulates the recognition process from coarse-grained categories to fine-grained categories. To overcome forgetting in this benchmark, we propose Hierarchy-Consistency Verification (HCV) as an enhancement to existing continual learning methods. Our method incrementally discovers the hierarchical relations between classes. We then show how this knowledge can be exploited during both training and inference. Experiments on three setups of varying difficulty demonstrate that our HCV module improves performance of existing continual learning methods under this IIRC setting by a large margin. Code is available in https://github.com/wangkai930418/HCV_IIRC.

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8

Recently, the database management system (DBMS) community has witnessed the power of machine learning (ML) solutions for DBMS tasks. Despite their promising performance, these existing solutions can hardly be considered satisfactory. First, these ML-based methods in DBMS are not effective enough because they are optimized on each specific task, and cannot explore or understand the intrinsic connections between tasks. Second, the training process has serious limitations that hinder their practicality, because they need to retrain the entire model from scratch for a new DB. Moreover, for each retraining, they require an excessive amount of training data, which is very expensive to acquire and unavailable for a new DB. We propose to explore the transferabilities of the ML methods both across tasks and across DBs to tackle these fundamental drawbacks. In this paper, we propose a unified model MTMLF that uses a multi-task training procedure to capture the transferable knowledge across tasks and a pre-train fine-tune procedure to distill the transferable meta knowledge across DBs. We believe this paradigm is more suitable for cloud DB service, and has the potential to revolutionize the way how ML is used in DBMS. Furthermore, to demonstrate the predicting power and viability of MTMLF, we provide a concrete and very promising case study on query optimization tasks. Last but not least, we discuss several concrete research opportunities along this line of work.

0
0
下载
预览

Unsupervised domain adaptation, which involves transferring knowledge from a label-rich source domain to an unlabeled target domain, can be used to substantially reduce annotation costs in the field of object detection. In this study, we demonstrate that adversarial training in the source domain can be employed as a new approach for unsupervised domain adaptation. Specifically, we establish that adversarially trained detectors achieve improved detection performance in target domains that are significantly shifted from source domains. This phenomenon is attributed to the fact that adversarially trained detectors can be used to extract robust features that are in alignment with human perception and worth transferring across domains while discarding domain-specific non-robust features. In addition, we propose a method that combines adversarial training and feature alignment to ensure the improved alignment of robust features with the target domain. We conduct experiments on four benchmark datasets and confirm the effectiveness of our proposed approach on large domain shifts from real to artistic images. Compared to the baseline models, the adversarially trained detectors improve the mean average precision by up to 7.7%, and further by up to 11.8% when feature alignments are incorporated. Although our method degrades performance for small domain shifts, quantification of the domain shift based on the Frechet distance allows us to determine whether adversarial training should be conducted.

0
0
下载
预览

Self-supervised learning has recently shown great potential in vision tasks through contrastive learning which aims to discriminate each image, or instance, in the dataset. However, such instance-level learning ignores the semantic relationship among instances and sometimes undesirably repels the anchor from the semantically similar samples, termed as "false negatives". In this work, we show that the unfavorable effect from false negatives is more significant for the large-scale datasets with more semantic concepts. To address the issue, we propose a novel self-supervised contrastive learning framework that incrementally detects and explicitly removes the false negative samples. Specifically, following the training process, our method dynamically detects increasing high-quality false negatives considering that the encoder gradually improves and the embedding space becomes more semantically structural. Next, we discuss two strategies to explicitly remove the detected false negatives during contrastive learning. Extensive experiments show that our framework outperforms other self-supervised contrastive learning methods on multiple benchmarks in a limited resource setup.

0
0
下载
预览

Object detection has achieved substantial progress in the last decade. However, detecting novel classes with only few samples remains challenging, since deep learning under low data regime usually leads to a degraded feature space. Existing works employ a holistic fine-tuning paradigm to tackle this problem, where the model is first pre-trained on all base classes with abundant samples, and then it is used to carve the novel class feature space. Nonetheless, this paradigm is still imperfect. Durning fine-tuning, a novel class may implicitly leverage the knowledge of multiple base classes to construct its feature space, which induces a scattered feature space, hence violating the inter-class separability. To overcome these obstacles, we propose a two-step fine-tuning framework, Few-shot object detection via Association and DIscrimination (FADI), which builds up a discriminative feature space for each novel class with two integral steps. 1) In the association step, in contrast to implicitly leveraging multiple base classes, we construct a compact novel class feature space via explicitly imitating a specific base class feature space. Specifically, we associate each novel class with a base class according to their semantic similarity. After that, the feature space of a novel class can readily imitate the well-trained feature space of the associated base class. 2) In the discrimination step, to ensure the separability between the novel classes and associated base classes, we disentangle the classification branches for base and novel classes. To further enlarge the inter-class separability between all classes, a set-specialized margin loss is imposed. Extensive experiments on Pascal VOC and MS-COCO datasets demonstrate FADI achieves new SOTA performance, significantly improving the baseline in any shot/split by +18.7. Notably, the advantage is most announced on extremely few-shot scenarios.

0
3
下载
预览

Recently, image-to-image translation has made significant progress in achieving both multi-label (\ie, translation conditioned on different labels) and multi-style (\ie, generation with diverse styles) tasks. However, due to the unexplored independence and exclusiveness in the labels, existing endeavors are defeated by involving uncontrolled manipulations to the translation results. In this paper, we propose Hierarchical Style Disentanglement (HiSD) to address this issue. Specifically, we organize the labels into a hierarchical tree structure, in which independent tags, exclusive attributes, and disentangled styles are allocated from top to bottom. Correspondingly, a new translation process is designed to adapt the above structure, in which the styles are identified for controllable translations. Both qualitative and quantitative results on the CelebA-HQ dataset verify the ability of the proposed HiSD. We hope our method will serve as a solid baseline and provide fresh insights with the hierarchically organized annotations for future research in image-to-image translation. The code has been released at https://github.com/imlixinyang/HiSD.

0
8
下载
预览

Object recognition techniques using convolutional neural networks (CNN) have achieved great success. However, state-of-the-art object detection methods still perform poorly on large vocabulary and long-tailed datasets, e.g. LVIS. In this work, we analyze this problem from a novel perspective: each positive sample of one category can be seen as a negative sample for other categories, making the tail categories receive more discouraging gradients. Based on it, we propose a simple but effective loss, named equalization loss, to tackle the problem of long-tailed rare categories by simply ignoring those gradients for rare categories. The equalization loss protects the learning of rare categories from being at a disadvantage during the network parameter updating. Thus the model is capable of learning better discriminative features for objects of rare classes. Without any bells and whistles, our method achieves AP gains of 4.1% and 4.8% for the rare and common categories on the challenging LVIS benchmark, compared to the Mask R-CNN baseline. With the utilization of the effective equalization loss, we finally won the 1st place in the LVIS Challenge 2019. Code has been made available at: https: //github.com/tztztztztz/eql.detectron2

0
5
下载
预览

Text classification tends to be difficult when the data is deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating explicit common linguistic features across tasks. Deep language representations have proven to be very effective forms of unsupervised pretraining, yielding contextualized features that capture linguistic properties and benefit downstream natural language understanding tasks. However, the effect of pretrained language representation for few-shot learning on text classification tasks is still not well understood. In this study, we design a few-shot learning model with pretrained language representations and report the empirical results. We show that our approach is not only simple but also produces state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at https://github.com/zxlzr/FewShotNLP.

0
3
下载
预览

Knowledge Transfer (KT) techniques tackle the problem of transferring the knowledge from a large and complex neural network into a smaller and faster one. However, existing KT methods are tailored towards classification tasks and they cannot be used efficiently for other representation learning tasks. In this paper a novel knowledge transfer technique, that is capable of training a student model that maintains the same amount of mutual information between the learned representation and a set of (possible unknown) labels as the teacher model, is proposed. Apart from outperforming existing KT techniques, the proposed method allows for overcoming several limitations of existing methods providing new insight into KT as well as novel KT applications, ranging from knowledge transfer from handcrafted feature extractors to {cross-modal} KT from the textual modality into the representation extracted from the visual modality of the data.

0
5
下载
预览

We study object recognition under the constraint that each object class is only represented by very few observations. In such cases, naive supervised learning would lead to severe over-fitting in deep neural networks due to limited training data. We tackle this problem by creating much more training data through label propagation from the few labeled examples to a vast collection of unannotated images. Our main insight is that such a label propagation scheme can be highly effective when the similarity metric used for propagation is learned and transferred from other related domains with lots of data. We test our approach on semi-supervised learning, transfer learning and few-shot recognition, where we learn our similarity metric using various supervised/unsupervised pretraining methods, and transfer it to unlabeled data across different data distributions. By taking advantage of unlabeled data in this way, we achieve significant improvements on all three tasks. Notably, our approach outperforms current state-of-the-art techniques by an absolute $20\%$ for semi-supervised learning on CIFAR10, $10\%$ for transfer learning from ImageNet to CIFAR10, and $6\%$ for few-shot recognition on mini-ImageNet, when labeled examples are limited.

0
3
下载
预览

Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.

0
3
下载
预览
小贴士
相关论文
Ziniu Wu,Pei Yu,Peilun Yang,Rong Zhu,Yuxing Han,Yaliang Li,Defu Lian,Kai Zeng,Jingren Zhou
0+阅读 · 11月25日
Kazuma Fujii,Hiroshi Kera,Kazuhiko Kawamoto
0+阅读 · 11月25日
Tsai-Shien Chen,Wei-Chih Hung,Hung-Yu Tseng,Shao-Yi Chien,Ming-Hsuan Yang
0+阅读 · 11月24日
Yuhang Cao,Jiaqi Wang,Ying Jin,Tong Wu,Kai Chen,Ziwei Liu,Dahua Lin
3+阅读 · 11月23日
Xinyang Li,Shengchuan Zhang,Jie Hu,Liujuan Cao,Xiaopeng Hong,Xudong Mao,Feiyue Huang,Yongjian Wu,Rongrong Ji
8+阅读 · 3月2日
Equalization Loss for Long-Tailed Object Recognition
Jingru Tan,Changbao Wang,Buyu Li,Quanquan Li,Wanli Ouyang,Changqing Yin,Junjie Yan
5+阅读 · 2020年4月14日
Ningyu Zhang,Zhanlin Sun,Shumin Deng,Jiaoyan Chen,Huajun Chen
3+阅读 · 2019年8月22日
Nikolaos Passalis,Anastasios Tefas
5+阅读 · 2019年3月20日
Bin Liu,Zhirong Wu,Han Hu,Stephen Lin
3+阅读 · 2018年12月20日
Wenhan Xiong,Mo Yu,Shiyu Chang,Xiaoxiao Guo,William Yang Wang
3+阅读 · 2018年8月27日
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
6+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
8+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
3+阅读 · 2017年8月6日
Top