The increasing compute demands of AI systems have led to the emergence of services that train models on behalf of clients lacking necessary resources. However, ensuring correctness of training and guarding against potential training-time attacks, such as data poisoning and backdoors, poses challenges. Existing works on verifiable training largely fall into two classes: proof-based systems, which are difficult to scale, and ``optimistic'' methods that consider a third-party auditor who can replicate the training process and contest the trainer. A key challenge with the latter is that nondeterminism between GPU types during training prevents exact replication of the training process, resulting in schemes that are non-robust. We propose a method that combines training in a higher precision than the target, rounding after intermediate computations, and sharing rounding decisions based on an adaptive thresholding procedure, to successfully control for nondeterminism. Across three different NVIDIA GPUs (A40, Titan XP, RTX 2080 Ti), we achieve exact training replication at FP32 precision for both full-training and fine-tuning of ResNet-50 (23M) and GPT-2 (117M) models. Our verifiable training scheme significantly decreases the storage and time costs compared to proof-based systems, and is publicly released at https://github.com/meghabyte/verifiable-training.
翻译:暂无翻译