This paper considers predicting future statuses of multiple agents in an online fashion by exploiting dynamic interactions in the system. We propose a novel collaborative prediction unit (CoPU), which aggregates the predictions from multiple collaborative predictors according to a collaborative graph. Each collaborative predictor is trained to predict the status of an agent by considering the impact of another agent. The edge weights of the collaborative graph reflect the importance of each predictor. The collaborative graph is adjusted online by multiplicative update, which can be motivated by minimizing an explicit objective. With this objective, we also conduct regret analysis to indicate that, along with training, our CoPU achieves similar performance with the best individual collaborative predictor in hindsight. This theoretical interpretability distinguishes our method from many other graph networks. To progressively refine predictions, multiple CoPUs are stacked to form a collaborative graph neural network. Extensive experiments are conducted on three tasks: online simulated trajectory prediction, online human motion prediction and online traffic speed prediction, and our methods outperform state-of-the-art works on the three tasks by 28.6%, 17.4% and 21.0% on average, respectively.


翻译:本文通过利用系统中的动态互动,考虑在线预测多种物剂的未来状况。 我们提出一个新的协作预测单位( COPU), 将多个协作预测器的预测按照协作图表汇总。 每个协作预测器都经过培训, 通过考虑另一个物剂的影响来预测一个物剂的状况。 协作图的边缘重量反映了每个预测器的重要性。 协作图通过多倍更新在网上调整, 其动机可以是最大限度地降低一个明确的目标。 有了这个目标, 我们还进行遗憾分析, 以表明我们的COPU在培训的同时, 取得了与后视中最佳个体合作预测器相似的性能。 这种理论解释性将我们的方法与许多其他图形网络区分开来。 为了逐步完善预测, 多功能预测器会堆叠成一个合作的图形神经网络。 在三项任务上进行了广泛的实验: 在线模拟轨迹预测, 在线人类运动预测和在线交通速度预测, 以及我们的方法在三项任务上的平均比最新工作分别高出28.6%、 17.4%和21.0%。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
14+阅读 · 2021年6月27日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
17+阅读 · 2019年3月28日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员