Automated filtering of toxic conversations may help an Open-source software (OSS) community to maintain healthy interactions among the project participants. Although, several general purpose tools exist to identify toxic contents, those may incorrectly flag some words commonly used in the Software Engineering (SE) context as toxic (e.g., 'junk', 'kill', and 'dump') and vice versa. To encounter this challenge, an SE specific tool has been proposed by the CMU Strudel Lab (referred as the `STRUDEL' hereinafter) by combining the output of the Perspective API with the output from a customized version of the Stanford's Politeness detector tool. However, since STRUDEL's evaluation was very limited with only 654 SE text, its practical applicability is unclear. Therefore, this study aims to empirically evaluate the Strudel tool as well as four state-of-the-art general purpose toxicity detectors on a large scale SE dataset. On this goal, we empirically developed a rubric to manually label toxic SE interactions. Using this rubric, we manually labeled a dataset of 6,533 code review comments and 4,140 Gitter messages. The results of our analyses suggest significant degradation of all tools' performances on our datasets. Those degradations were significantly higher on our dataset of formal SE communication such as code review than on our dataset of informal communication such as Gitter messages. Two of the models from our study showed significant performance improvements during 10-fold cross validations after we retrained those on our SE datasets. Based on our manual investigations of the incorrectly classified text, we have identified several recommendations for developing an SE specific toxicity detector.


翻译:自动过滤有毒对话可能有助于开放源码软件群(OSS)保持项目参与者之间的健康互动。虽然存在若干用于识别有毒内容的一般用途工具,但这些工具可能错误地将软件工程(SE)背景下常用的一些词标记为有毒(例如“junk”、“kill”和“dump”),反之亦然。为了应对这一挑战,CMU Strudel实验室(以下称为“STRUDEEL”)提出了一个SE专用工具,将“展望”API的输出与斯坦福理学探测器定制版本的输出结合起来。然而,由于STRUDEL的评估非常有限,只有654 SE文本,其实际适用性也不清楚。因此,本研究的目的是对STRuddel工具进行实证性评估,以及大规模SE数据集的四种状态一般毒性检测器。关于这个目标,我们实验性地为SEE互动的标签。 使用这个图,我们手动标记了6,533的SOL性能检测器的数据集集, 也就是我们在SEELOD的高级数据分析中,我们对SE的精确度数据分析中的所有数据分析。 我们在SELODSAL的数值分析中, 的数值分析中, 的数值分析中,我们对SELADL的所有数据分析中, 做了大量数据分析。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
AutoML: A Survey of the State-of-the-Art
Arxiv
72+阅读 · 2019年8月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员