Structural bolts are critical components used in different structural elements, such as beam-column connections and friction damping devices. The clamping force in structural bolts is highly influenced by the bolt rotation. Much of the existing vision-based research about bolt rotation estimation relies on traditional computer vision algorithms such as Hough Transform to assess static images of bolts. This requires careful image preprocessing, and it may not perform well in the situation of complicated bolt assemblies, or in the presence of surrounding objects and background noise, thus hindering their real-world applications. In this study, an integrated real-time detect-track method, namely RTDT-Bolt, is proposed to monitor the bolt rotation angle. First, a real-time convolutional-neural-networks-based object detector, named YOLOv3-tiny, is established and trained to localize structural bolts. Then, the target-free object tracking algorithm based on optical flow is implemented, to continuously monitor and quantify the rotation of structural bolts. In order to enhance the tracking performance against background noise and potential illumination changes during tracking, the YOLOv3-tiny is integrated with the optical flow tracking algorithm to re-detect the bolts when the tracking gets lost. Extensive parameter studies were conducted to identify optimal tracking performance and examine the potential limitations. The results indicate the RTDT-Bolt method can greatly enhance the tracking performance of bolt rotation, which can achieve over 90% accuracy using the recommended range for the parameters.


翻译:结构螺栓是不同结构要素中使用的关键组成部分,例如梁柱连接和摩擦阻断装置。 结构螺栓的紧紧力量受到螺栓旋转的高度影响。 有关螺栓旋转估计的现有视觉研究大多依靠传统的计算机视觉算法, 如Hough变换, 以评估螺栓的静态图像。 这需要仔细的图像预处理, 在复杂的螺栓组件的情况下, 或者在周围物体和背景噪音的存在下, 可能无法很好地运行, 从而阻碍它们的真实世界应用。 在这项研究中, 提议采用一个综合实时探测轨道方法, 即 RTDT- Balt, 来监测螺栓旋转角度。 首先, 实时的螺旋- 神经- 网络基于天体物体探测器( 名为YOLOv3- tin) 的现有视觉研究, 建立并训练它来评估结构螺栓的本地化。 然后, 执行基于光学流的无目标物体跟踪算算算算法, 以持续监测和量化结构螺栓的旋转。 为了在跟踪过程中, 跟踪背景噪音和潜在不测明变, YOLOV3- 的螺旋轨测算法是用来进行最佳跟踪。 进行最佳的同步跟踪, 最佳的运行, 。 进行最精确的轨测算, 进行最精确的轨测算, 进行最精确的轨测算法 进行到最深的轨测算方法, 进行最深的跟踪,, 进行最深的轨的轨的轨算方法可以进行最深的轨算法 进行到最深的跟踪 。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2022年1月20日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Object Relation Detection Based on One-shot Learning
Arxiv
3+阅读 · 2018年7月16日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员