In this work, we propose a self-supervised multi-agent system, termed a memory-like adaptive modeling multi-agent learning system (MAMMALS), that realizes online learning towards behavioral pattern clustering tasks for time series. Encoding the visual behaviors as discrete time series(DTS), and training and modeling them in the multi-agent system with a bio-memory-like form. We finally implemented a fully decentralized multi-agent system design framework and completed its feasibility verification in a surveillance video application scenario on vehicle path clustering. In multi-agent learning, using learning methods designed for individual agents will typically perform poorly globally because of the behavior of ignoring the synergy between agents.
翻译:在这项工作中,我们提出一个自我监督的多试剂系统,称为记忆式适应性模型多试剂学习系统(MAMMALS),它能实现在线学习,为时间序列带来行为模式组合任务。将视觉行为编译为离散时间序列(DTS),并在多试剂系统中以生物模拟形式进行培训和建模。我们最终实施了完全分散的多试剂系统设计框架,并在车辆路径集群的监视视频应用情景中完成了可行性核查。 在多试剂学习中,使用为个体剂设计的学习方法,由于忽视代理人之间的协同作用,通常会在全球范围表现不佳。