This work details a scalable framework to orchestrate a swarm of rotary-wing UAVs serving as cellular relays to facilitate beyond line-of-sight connectivity and traffic offloading for ground users. First, a Multiscale Adaptive Energy-conscious Scheduling and TRajectory Optimization (MAESTRO) framework is developed for a single UAV. Aiming to minimize the time-averaged latency to serve user requests, subject to an average UAV power constraint, it is shown that the optimization problem can be cast as a semi-Markov decision process, and exhibits a multiscale structure: outer actions on radial wait velocities and terminal service positions minimize the long-term delay-power trade-off, optimized via value iteration; given these outer actions, inner actions on angular wait velocities and service trajectories minimize a short-term delay-energy cost. A novel hierarchical competitive swarm optimization scheme is developed in the inner optimization, to devise high-resolution trajectories via iterative pair-wise updates. Next, MAESTRO is eXtended to UAV swarms (MAESTRO-X) via scalable policy replication: enabled by a decentralized command-and-control network, the optimal single-agent policy is augmented with spread maximization, consensus-driven conflict resolution, adaptive frequency reuse, and piggybacking. Numerical evaluations show that, for user requests of 10 Mbits, generated according to a Poisson arrival process with rate 0.2 req/min/UAV, single-agent MAESTRO offers 3.8x faster service than a high-altitude platform and 29% faster than a static UAV deployment; moreover, for a swarm of 3 UAV-relays, MAESTRO-X delivers data payloads 4.7x faster than a successive convex approximation scheme; and remarkably, a single UAV optimized via MAESTRO outclasses 3 UAVs optimized via a deep-Q network by 38%.


翻译:这项工作详细制定了一个可扩缩的框架, 用于为地面用户配置一组旋转翼无人机, 作为蜂窝中继器, 以方便地面用户超越直线连通和流量卸载。 首先, 为单一无人机开发了一个多尺度适应性能源意识优化和轨迹优化最佳化框架(MAESTRO) 。 目的是最大限度地减少时间平均悬浮, 以满足用户请求, 但须遵守平均 UAV 动力限制, 显示优化问题可以作为半 Markov 决策程序, 并展示一个多尺度结构: 远程等待速度和终端服务位置上的外部行动, 最大限度地减少长期延迟能量交易, 优化通过价值复制优化; 鉴于这些外部行动、 角等待速度和服务轨迹, 最大限度地降低短期延迟能源成本。 一个新的等级竞争性优化 Pwarmial Pwarstal 优化计划是通过内部优化, 以互动双向更新的方式设计高分辨率轨迹轨迹。 下一步, MAESRO 将一个最快速的智能政策升级, 将一个最优化的 ASyal- hillal- slistal IMAL ASy ASy IMAL- dal- dal- dal- sal 提供 a 提供 a 和一个最优化的自动升级 ASy- 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员