It has been shown that deep learning models can under certain circumstances outperform traditional statistical methods at forecasting. Furthermore, various techniques have been developed for quantifying the forecast uncertainty (prediction intervals). In this paper, we utilize prediction intervals constructed with the aid of artificial neural networks to detect anomalies in the multivariate setting. Challenges with existing deep learning-based anomaly detection approaches include $(i)$ large sets of parameters that may be computationally intensive to tune, $(ii)$ returning too many false positives rendering the techniques impractical for use, $(iii)$ requiring labeled datasets for training which are often not prevalent in real life. Our approach overcomes these challenges. We benchmark our approach against the oft-preferred well-established statistical models. We focus on three deep learning architectures, namely, cascaded neural networks, reservoir computing and long short-term memory recurrent neural networks. Our finding is deep learning outperforms (or at the very least is competitive to) the latter.


翻译:已经表明,在某些情况下,深层次学习模式可以优于传统的预测统计方法;此外,已经开发了各种技术来量化预测的不确定性(预测间隔);在本文中,我们利用人工神经网络帮助建造的预测间隔来探测多变环境中的异常现象;现有深层学习异常现象探测方法的挑战包括:可能计算密集的大规模参数(一)美元;返回过多的假正数,使技术不切实际使用;美元(三)美元,要求有标签的数据集用于培训,而培训在现实生活中往往并不普遍;我们的方法克服了这些挑战;我们根据特意的既定统计模型衡量我们的方法;我们侧重于三个深层次的学习结构,即:级联式神经网络、储油量计算和长期短期内存重复神经网络。我们的发现是深入学习外形(或至少是竞争性的)后者。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Learning Memory-guided Normality for Anomaly Detection
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员