In reward-free reinforcement learning (RL), an agent explores the environment first without any reward information, in order to achieve certain learning goals afterwards for any given reward. In this paper we focus on reward-free RL under low-rank MDP models, in which both the representation and linear weight vectors are unknown. Although various algorithms have been proposed for reward-free low-rank MDPs, the corresponding sample complexity is still far from being satisfactory. In this work, we first provide the first known sample complexity lower bound that holds for any algorithm under low-rank MDPs. This lower bound implies it is strictly harder to find a near-optimal policy under low-rank MDPs than under linear MDPs. We then propose a novel model-based algorithm, coined RAFFLE, and show it can both find an $\epsilon$-optimal policy and achieve an $\epsilon$-accurate system identification via reward-free exploration, with a sample complexity significantly improving the previous results. Such a sample complexity matches our lower bound in the dependence on $\epsilon$, as well as on $K$ in the large $d$ regime, where $d$ and $K$ respectively denote the representation dimension and action space cardinality. Finally, we provide a planning algorithm (without further interaction with true environment) for RAFFLE to learn a near-accurate representation, which is the first known representation learning guarantee under the same setting.


翻译:在无奖励信息的条件下,无奖励强化学习要求智能体首先探索环境,以在后续任意给定奖励下实现特定的学习目标。本文关注低秩马尔可夫决策过程(MDP)下无奖励强化学习,其中表示和线性权重向量均未知。尽管已经提出了各种用于低秩MDP的无奖励强化学习算法,但其所对应的样本复杂度仍远未令人满意。本文首先提供了已知的首个低秩MDP下的样本复杂度下界,该下界意味着实现低秩MDP下的近最优策略比实现线性MDP下的近最优策略更难。然后,我们提出了一种新型的基于模型的RAFFLE算法,并证明它可以通过无奖励探索找到一个ε-最优策略,以及通过无奖励探索实现ε-准确系统识别,其样本复杂度显著优于之前的结果。这样的样本复杂度在ε的依赖性及在大的d阶段(其中d和K分别表示表示维数和动作空间基数)上与下界相匹配。最后,我们提供了一种规划算法(不再与真实环境相互作用)用于RAFFLE来学习近似准确的表示,这是相同设置下已知的首个表示学习保证。

0
下载
关闭预览

相关内容

【2022新书】强化学习工业应用,408页pdf
专知会员服务
228+阅读 · 2022年2月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
11+阅读 · 2021年12月8日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员