We consider the problem of uncertainty quantification for an unknown low-rank matrix $\mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image processing, satellite imaging, and seismology, providing a principled framework for validating scientific conclusions and guiding decision-making. However, existing literature has largely focused on the completion (i.e., point estimation) of the matrix $\mathbf{X}$, with little work on investigating its uncertainty. To this end, we propose in this work a new Bayesian modeling framework, called BayeSMG, which parametrizes the unknown $\mathbf{X}$ via its underlying row and column subspaces. This Bayesian subspace parametrization allows for efficient posterior inference on matrix subspaces, which represents interpretable phenomena in many applications. This can then be leveraged for improved matrix recovery. We demonstrate the effectiveness of BayeSMG over existing Bayesian matrix recovery methods in numerical experiments and a seismic sensor network application.


翻译:我们认为,鉴于对一个未知的低级基质 $\mathbf{X} 进行局部和紧张的观察,对一个未知的低级基质的不确定性进行量化的问题。这种不确定性的量化对于许多现实世界问题至关重要,包括图像处理、卫星成像和地震学,为验证科学结论和指导决策提供了一个原则性框架。然而,现有文献主要侧重于基质 $\mathbf{X} 的完成(即点估计),而调查其不确定性的工作很少。为此,我们提议在这项工作中建立一个新的巴伊西亚模型框架,称为BayesMG, 通过其底行和柱子次空间将未知的美元作为准正值。巴伊西亚次空间的子空间化使得在基质子空间上高效的后推力,这在许多应用中代表了可解释的现象。然后,这可用于改进矩阵的恢复工作。我们证明巴伊斯MG在数字实验和地震传感器网络应用方面对现有的巴伊斯基质矩阵恢复方法的有效性。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员