It is common to be interested in rankings or order relationships among entities. In complex settings where one does not directly measure a univariate statistic upon which to base ranks, such inferences typically rely on statistical models having entity-specific parameters. These can be treated as random effects in hierarchical models characterizing variation among the entities. In this paper, we are particularly interested in the problem of ranking basketball players in terms of their contribution to team performance. Using data from the United States National Basketball Association (NBA), we find that many players have similar latent ability levels, making any single estimated ranking highly misleading. The current literature fails to provide summaries of order relationships that adequately account for uncertainty. Motivated by this, we propose a Bayesian strategy for characterizing uncertainty in inferences on order relationships among players and lineups. Our approach adapts to scenarios in which uncertainty in ordering is high by producing more conservative results that improve interpretability. This is achieved through a reward function within a decision theoretic framework. We apply our approach to data from the 2009-10 NBA season.


翻译:通常对实体之间的等级或秩序关系感兴趣。在不直接计量据以排名的单项统计的复杂环境中,这种推论通常依赖具有实体特定参数的统计模型。这些推论可被视为实体之间差异的等级模式中的随机效应。在本文中,我们特别关心篮球运动员对团队业绩贡献的等级问题。我们利用美国国家篮球协会的数据发现,许多球手具有相似的潜在能力水平,使得任何单项估计排名高度误导。当前文献未能提供足以说明不确定性的顺序关系摘要。我们为此提出一种巴伊西亚战略,将不确定性定性为对行为者和排队之间秩序关系的推断。我们的方法适应了在排序上具有高度不确定性的情景,通过产生更保守的结果来提高可解释性。我们是通过在决策理论框架内的奖励功能实现这一点。我们对2009-10 NBA季节的数据采用了我们的方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月30日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关VIP内容
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员