The question whether a partition $\mathcal{P}$ and a hierarchy $\mathcal{H}$ or a tree-like split system $\mathfrak{S}$ are compatible naturally arises in a wide range of classification problems. In the setting of phylogenetic trees, one asks whether the sets of $\mathcal{P}$coincide with leaf sets of connected components obtained by deleting some edges from the tree $T$ that represents $\mathcal{H}$ or $\mathfrak{S}$, respectively. More generally, we ask whether a refinement $T^*$ of $T$ exists such that $T^*$ and $\mathcal{P}$ are compatible in this sense. The latter is closely related to the question as to whether there exists a tree at all that is compatible with $\mathcal{P}$. We report several characterizations for (refinements of) hierarchies and split systems that are compatible with (systems of) partitions. In addition, we provide a linear-time algorithm to check whether refinements of trees and a given partition are compatible. The latter problem becomes NP-complete but fixed-parameter tractable if a system of partitions is considered instead of a single partition. In this context, we also explore the close relationship of the concept of compatibility and so-called Fitch maps.
翻译:分区 $\ mathcal{P} $ 和 等级 $\ mathcal{H} $ 和 mathcal{H} 美元 或树形分割系统$\ mathfrak{S} 美元是否相容的问题自然出现在一系列广泛的分类问题中。 在设置植物基因树时,人们会问这组$\ mathcal{P} $ 与叶叶片组相匹配, 其叶子组系是否分别代表$\ mathcal{H} 美元或$\ mathfrak{S} 美元。 更一般地说, 我们问, 是否存在 $T $ 的精细精度, 美元和 $\\ g$\ mathfrak{S} 美元 。 在这种意义上来说, $T $T 和 $\ machal 的精度定义是否兼容性, 和 $\ road roupal deal develop sult sult sult sult sult sult