In this paper we study $L_p$-norm spherical copulas for arbitrary $p \in [1,\infty]$ and arbitrary dimensions. The study is motivated by a conjecture that these distributions lead to a sharp bound for the value of a certain generalized mean difference. We fully characterize conditions for existence and uniqueness of $L_p$-norm spherical copulas. Explicit formulas for their densities and correlation coefficients are derived and the distribution of the radial part is determined. Moreover, statistical inference and efficient simulation are considered.
翻译:在本文中,我们研究的是 $L_p$-norrm 球形阴极,用于任意的 $p 美元 和任意的尺寸[1,\\ infty] 美元 。研究的动机是推测这些分布会导致某种普遍平均差值的急剧结合。我们充分说明了$L_p$-norm 球形阴极的存在和独特性的条件。我们得出了其密度和相关系数的清晰公式,确定了放射部分的分布。此外,还考虑了统计推论和有效模拟。