In this paper we study $L_p$-norm spherical copulas for arbitrary $p \in [1,\infty]$ and arbitrary dimensions. The study is motivated by a conjecture that these distributions lead to a sharp bound for the value of a certain generalized mean difference. We fully characterize conditions for existence and uniqueness of $L_p$-norm spherical copulas. Explicit formulas for their densities and correlation coefficients are derived and the distribution of the radial part is determined. Moreover, statistical inference and efficient simulation are considered.


翻译:在本文中,我们研究的是 $L_p$-norrm 球形阴极,用于任意的 $p 美元 和任意的尺寸[1,\\ infty] 美元 。研究的动机是推测这些分布会导致某种普遍平均差值的急剧结合。我们充分说明了$L_p$-norm 球形阴极的存在和独特性的条件。我们得出了其密度和相关系数的清晰公式,确定了放射部分的分布。此外,还考虑了统计推论和有效模拟。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Top
微信扫码咨询专知VIP会员