We study coresets for clustering with capacity and fairness constraints. Our main result is a near-linear time algorithm to construct $\tilde{O}(k^2\varepsilon^{-2z-2})$-sized $\varepsilon$-coresets for capacitated $(k,z)$-clustering which improves a recent $\tilde{O}(k^3\varepsilon^{-3z-2})$ bound by [BCAJ+22, HJLW23]. As a corollary, we also save a factor of $k \varepsilon^{-z}$ on the coreset size for fair $(k,z)$-clustering compared to them. We fundamentally improve the hierarchical uniform sampling framework of [BCAJ+22] by adaptively selecting sample size on each ring instance, proportional to its clustering cost to an optimal solution. Our analysis relies on a key geometric observation that reduces the number of total ``effective centers" from [BCAJ+22]'s $\tilde{O}(k^2\varepsilon^{-z})$ to merely $O(k\log \varepsilon^{-1})$ by being able to ``ignore'' all center points that are too far or too close to the ring center.


翻译:我们研究的是具有能力和公平性限制的集群核心。 我们的主要结果是一个近线性时间算法, 用于构建 $\ tilde{O}( k ⁇ 2\ varepsilon}\\ 2z-2}) (k, z) $- 集合, 使最新的 $( tilde{ O} (k, 3\ varepsilon} 3z-2} (k ⁇ 3\ varepsilon} 3z-2} ) 受 [BCAJ+22, HJLW23] 约束的组合。 作为必然结果, 我们还在核心设定的大小上节省了 $(k,z) 美元($) 和 美元( 美元) 的( varepsilon) 核心上的一个系数。 我们从根本上改进了[ BCAJJ+22] 的等级统一取样框架, 在每个圆柱形实例中, 与它的组合成本和最佳解决方案成比例。 我们的分析依赖于一个关键的几何观察, 将总“ 有效中心” 从 [BCAJ+22] 的 $\\\\\\\\\\\\\\\\\ revilent crent crentrentral cral cral centrus

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2019年11月14日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员