This paper introduces a novel method for the efficient second-order accurate computation of normal fields from volume fractions on unstructured polyhedral meshes. Locally, i.e. in each mesh cell, an averaged normal is reconstructed by fitting a plane in a least squares sense to the volume fraction data of neighboring cells while implicitly accounting for volume conservation in the cell at hand. The resulting minimization problem is solved approximately by employing a Newton-type method. Moreover, applying the Reynolds transport theorem allows to assess the regularity of the derivatives. Since the divergence theorem implies that the volume fraction can be cast as a sum of face-based quantities, our method considerably simplifies the numerical procedure for applications in three spatial dimensions while demonstrating an inherent ability to robustly deal with unstructured meshes. We discuss the theoretical foundations, regularity and appropriate error measures, along with the details of the numerical algorithm. Finally, numerical results for convex and non-convex hypersurfaces embedded in cuboidal and tetrahedral meshes are presented, where we obtain second-order convergence for the normal alignment and symmetric volume difference. Moreover, the findings are substantiated by completely new deep insights into the minimization procedure.
翻译:本文引入了一种新颖的方法, 以高效的第二顺序精确计算正常字段, 从未结构化的多元面板上的体积分数计算正常字段。 本地, 即每个网格单元格中, 平均常态通过将平面与相邻单元格的体积分数数据安装成一个最小方方位来重建, 同时暗含计算手边单元格中体积保存量的数据。 由此产生的最小化问题通过使用牛顿型方法大致解决。 此外, 应用 Reynolds 运输理论允许评估衍生物的规律性。 由于偏差的理词意味着体积分可以作为面基数量的总和来投放, 我们的方法大大简化了三个空间尺寸应用的数值程序, 同时展示了与无结构的模版块进行强有力处理的内在能力。 我们讨论了理论基础、 规律性和适当的误差计量方法, 以及数字算法的细节。 最后, 使用Reynx 和非convex 超层表来评估衍生物的规律性性。 由于这种偏差, 我们从中获得了二阶级的面趋一致, 和四面介质介质质介质的中间质质的中间质分析结果 。 。