In this paper, we consider a one-dimensional diffusion process with jumps driven by a Hawkes process. We are interested in the estimations of the volatility function and of the jump function from discrete high-frequency observations in a long time horizon which remained an open question until now. First, we propose to estimate the volatility coefficient. For that, we introduce a truncation function in our estimation procedure that allows us to take into account the jumps of the process and estimate the volatility function on a linear subspace of L2(A) where A is a compact interval of R. We obtain a bound for the empirical risk of the volatility estimator, ensuring its consistency, and then we study an adaptive estimator w.r.t. the regularity. Then, we define an estimator of a sum between the volatility and the jump coefficient modified with the conditional expectation of the intensity of the jumps. We also establish a bound for the empirical risk for the non-adaptive estimators of this sum, the convergence rate up to the regularity of the true function, and an oracle inequality for the final adaptive estimator.Finally, we give a methodology to recover the jump function in some applications. We conduct a simulation study to measure our estimators' accuracy in practice and discuss the possibility of recovering the jump function from our estimation procedure.


翻译:在本文中,我们考虑一个单维扩散过程,由霍克斯进程驱动跳跃。我们感兴趣的是,在很长的时空范围内,从离散的高频观测中估算挥发功能和跳跃功能,这一直是一个未决问题。首先,我们提议估算挥发系数。为此,我们在估算程序中引入一个抽出功能,以便我们考虑到这一进程的跳跃,并估算L2(A)线性亚空间的挥发功能,在这个空间的A是R的紧凑间隔。我们获得了挥发性估测仪的经验风险约束,确保其一致性,然后我们研究一个适应性估测器W.r.t.的规律性。然后,我们确定波动系数和根据对跳动强度的有条件期望而修改的跳动系数之间的一个总和值的估算值。我们还为这一数值非适应性估测值的直线性空间、与真实功能相符的趋合率以及最终适应性估测值的不平等性,然后我们研究一个适应性估定性估测度的精确性程序。我们最后的调整性估测测度应用了我们的跳动功能,最后的恢复性功能。我们最后的测测测测测测的机的功能。我们最后的测后,让我们的恢复性测算性测测算的机的机的机的机的功能。我们最后的测测算法,我们最后的恢复了一个测算功能。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员