A multiple objective space-time forecasting approach is presented involving cyclical curve log-regression, and multivariate time series spatial residual correlation analysis. Specifically, the mean quadratic loss function is minimized in the framework of trigonometric regression. While, in our subsequent spatial residual correlation analysis, maximization of the likelihood allows us to compute the posterior mode in a Bayesian multivariate time series soft-data framework. The presented approach is applied to the analysis of COVID-19 mortality in the first wave affecting the Spanish Communities, since March, 8, 2020 until May, 13, 2020. An empirical comparative study with Machine Learning (ML) regression, based on random k-fold cross-validation, and bootstrapping confidence interval and probability density estimation, is carried out. This empirical analysis also investigates the performance of ML regression models in a hard- and soft- data frameworks. The results could be extrapolated to other counts, countries, and posterior COVID-19 waves.
翻译:介绍了一种多重客观的时空预测方法,涉及周期曲线日志回归和多变时间序列空间剩余相关关系分析。具体地说,在三角回归框架内,平均二次损失功能被最小化。在随后的空间剩余相关分析中,将可能性最大化使我们能够在巴伊西亚多变量时间序列软数据框架内计算出后方模式。介绍的方法用于分析自3月、8日、2020年5月8日至2020年5月13日影响西班牙社区的第一波COVID-19死亡率。根据随机K倍交叉校验和跟踪信心间隔和概率密度估计对机械学习回归进行了实证比较研究。这一实证分析还调查了ML回归模型在硬数据框架和软数据框架中的性能。其结果可以外推到其他国家和后方COVID-19波。