Sampling, grouping, and aggregation are three important components in the multi-scale analysis of point clouds. In this paper, we present a novel data-driven sampler learning strategy for point-wise analysis tasks. Unlike the widely used sampling technique, Farthest Point Sampling (FPS), we propose to learn sampling and downstream applications jointly. Our key insight is that uniform sampling methods like FPS are not always optimal for different tasks: sampling more points around boundary areas can make the point-wise classification easier for segmentation. Towards this end, we propose a novel sampler learning strategy that learns sampling point displacement supervised by task-related ground truth information and can be trained jointly with the underlying tasks. We further demonstrate our methods in various point-wise analysis tasks, including semantic part segmentation, point cloud completion, and keypoint detection. Our experiments show that jointly learning of the sampler and task brings better performance than using FPS in various point-based networks.
翻译:取样、 分组和汇总是多尺度分析点云的三个重要组成部分。 在本文中, 我们为点云分析任务提出了一个全新的数据驱动采样员学习策略。 我们建议与广泛使用的采样技术、 远点取样( FPS ) 不同, 我们提议共同学习采样和下游应用。 我们的主要见解是, 统一采样方法, 像 FPS 这样的采样方法并不总是最适合不同的任务: 在边界地区周围采样更多的点可以使点对点分类更容易分离。 为此, 我们提出一个新的采样员学习战略, 学习受任务相关地面真相信息监督的采样点移位, 并且可以与基本任务共同培训。 我们进一步展示了我们在不同点分析任务中的方法, 包括语系分割、 点云的完成和关键点检测。 我们的实验表明, 联合学习采样员和任务比在各种点基网络中使用 FPS 还要好。