Mortality modeling is crucial to understanding the complex nature of population aging and projecting future trends. The Makeham term is a commonly used constant additive hazard in mortality modeling to capture background mortality unrelated to aging. In this manuscript, we propose representing Makeham mortality models as mixtures that describe lifetimes in a competing-risk framework: an individual dies either according to a baseline mortality mechanism or an exponential distribution, whatever strikes first. The baseline can describe mortality at all ages or just mortality due to aging. By using this approach, we can estimate the share of non-senescent mortality at each adult age, which is an essential contribution to the study of premature and senescent mortality. Our results allow for a better understanding of the underlying mechanisms of mortality and provide a more accurate picture of mortality dynamics in populations.
翻译:死亡模型对于理解人口老龄化的复杂性并预测未来趋势至关重要。Makeham术语是在死亡模型中常用的常数添加风险,用于捕捉与衰老无关的背景死亡率。在本文中,我们提出将Makeham死亡模型表示为混合模型,以竞争风险框架描述寿命:一个人死亡的方式是基于基线死亡机制或指数分布,以先到者为准。基线可以描述各个年龄段的死亡率或者只描述因衰老而死亡的死亡率。通过使用这种方法,我们可以估算每个成年年龄段的非老化死亡份额,这对于研究过早死亡和衰老死亡至关重要。我们的结果有助于更好地理解死亡的基本机制,并提供了在人口中更准确的死亡动态图片。