The latest advances in full-reference image quality assessment (IQA) involve unifying structure and texture similarity based on deep representations. The resulting Deep Image Structure and Texture Similarity (DISTS) metric, however, makes rather global quality measurements, ignoring the fact that natural photographic images are locally structured and textured across space and scale. In this paper, we describe a locally adaptive structure and texture similarity index for full-reference IQA, which we term A-DISTS. Specifically, we rely on a single statistical feature, namely the dispersion index, to localize texture regions at different scales. The estimated probability (of one patch being texture) is in turn used to adaptively pool local structure and texture measurements. The resulting A-DISTS is adapted to local image content, and is free of expensive human perceptual scores for supervised training. We demonstrate the advantages of A-DISTS in terms of correlation with human data on ten IQA databases and optimization of single image super-resolution methods.
翻译:在全参考图像质量评估(IQA)方面的最新进展涉及基于深层表示的统一结构和质地相似性。因此产生的深图像结构和质地相似性(DISTS)衡量标准,却得出了相当全球性的质量测量,忽略了自然摄影图像是局部结构的、跨越空间和规模的纹理这一事实。在本文中,我们描述了完全参照的IQA(我们称之为A-DISTS)的本地适应性结构和质地相似性指数。具体地说,我们依靠单一的统计特征,即分散指数,在不同尺度上将纹理区域本地化。估计概率(一个补丁是纹理)反过来用于适应性地集合地方结构和质地测量。产生的A-DISS适应于当地图像内容,没有昂贵的人类感官分数用于监管培训。我们展示了A-DISTS在与十个IQA数据库上的人类数据的相关性和优化单一图像超分辨率方法方面的优势。