Services and products are often offered via the execution of processes that vary according to the context, requirements, or customisation needs. The analysis of such process variants can highlight differences in the service outcome or quality, leading to process adjustments and improvement. Research in the area of process mining has provided several methods for process variants analysis. However, very few of those account for a statistical significance analysis of their output. Moreover, those techniques detect differences at the level of process traces, single activities, or performance. In this paper, we aim at describing the distinctive behavioural characteristics between variants expressed in the form of declarative process rules. The contribution to the research area is two-pronged: the use of declarative rules for the explanation of the process variants and the statistical significance analysis of the outcome. We assess the proposed method by comparing its results to the most recent process variants analysis methods. Our results demonstrate not only that declarative rules reveal differences at an unprecedented level of expressiveness, but also that our method outperforms the state of the art in terms of execution time.


翻译:分析这种过程变式可以突出服务结果或质量的差异,导致过程的调整和改进; 过程采矿领域的研究为过程变式分析提供了几种方法; 然而,其中很少几个是分析其产出的具有统计意义的分析; 此外,这些技术还发现在过程痕量、单一活动或性能水平上的差异; 在本文件中,我们的目的是说明以宣告性程序规则形式表示的变式之间的不同行为特点; 对研究领域的贡献是双管齐下的:使用宣示性规则解释过程变式和结果的统计意义分析; 我们通过比较其结果与最近的进程变式分析方法来评估拟议方法; 我们的结果不仅表明宣示性规则显示在前所未有的表达性水平上的差异,而且表明我们的方法在执行时间方面超越了艺术状态。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
可信机器学习的公平性综述
专知会员服务
67+阅读 · 2021年2月23日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员