Quantification of uncertainty in point cloud matching is critical in many tasks such as pose estimation, sensor fusion, and grasping. Iterative closest point (ICP) is a commonly used pose estimation algorithm which provides a point estimate of the transformation between two point clouds. There are many sources of uncertainty in this process that may arise due to sensor noise, ambiguous environment, and occlusion. However, for safety critical problems such as autonomous driving, a point estimate of the pose transformation is not sufficient as it does not provide information about the multiple solutions. Current probabilistic ICP methods usually do not capture all sources of uncertainty and may provide unreliable transformation estimates which can have a detrimental effect in state estimation or decision making tasks that use this information. In this work we propose a new algorithm to align two point clouds that can precisely estimate the uncertainty of ICP's transformation parameters. We develop a Stein variational inference framework with gradient based optimization of ICP's cost function. The method provides a non-parametric estimate of the transformation, can model complex multi-modal distributions, and can be effectively parallelized on a GPU. Experiments using 3D kinect data as well as sparse indoor/outdoor LiDAR data show that our method is capable of efficiently producing accurate pose uncertainty estimates.


翻译:对点云匹配的不确定性进行量化对于许多任务来说至关重要,例如,包含估计、感应聚合和掌握。循环点(ICP)是一种常用的常用估算算法,它为两点云之间的转换提供了点估计值。在这个过程中,由于传感器噪音、模糊的环境和封闭性,可能产生许多不确定因素。然而,对于自主驱动等安全关键问题,对构成变异的点估计是不够的,因为它不能提供有关多种解决办法的信息。目前比较方案的各种概率性方法通常不捕捉所有不确定性的来源,而且可能提供不可靠的变异估计值,从而对使用这些信息的国家估计或决策任务产生有害影响。在这项工作中,我们提议一种新的算法,对两点云进行匹配,以便精确估计比较方案的变异变参数的不确定性。我们开发了一个以梯度为基础优化比较方案的成本功能的斯坦变系数框架。这种方法提供了一种非参数性的变化估计,可以模拟复杂的多模式分布,并且可以在GPU上有效平行地平行地平行地进行转换,而使用3D型的精确度数据进行实验,以便显示我们的室内的精确度数据。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
最新《自动微分手册》77页pdf
专知会员服务
102+阅读 · 2020年6月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
3+阅读 · 2019年5月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
24+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
最新《自动微分手册》77页pdf
专知会员服务
102+阅读 · 2020年6月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
3+阅读 · 2019年5月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员