In this paper, we propose an efficient, high order accurate and asymptotic-preserving (AP) semi-Lagrangian (SL) method for the BGK model with constant or spatially dependent Knudsen number. The spatial discretization is performed by a mass conservative nodal discontinuous Galerkin (NDG) method, while the temporal discretization of the stiff relaxation term is realized by stiffly accurate diagonally implicit Runge-Kutta (DIRK) methods along characteristics. Extra order conditions are enforced for asymptotic accuracy (AA) property of DIRK methods when they are coupled with a semi-Lagrangian algorithm in solving the BGK model. A local maximum principle preserving (LMPP) limiter is added to control numerical oscillations in the transport step. Thanks to the SL and implicit nature of time discretization, the time stepping constraint is relaxed and it is much larger than that from an Eulerian framework with explicit treatment of the source term. Extensive numerical tests are presented to verify the high order AA, efficiency and shock capturing properties of the proposed schemes.


翻译:在本文中,我们建议对BGK模型采用高效、高顺序、准确和无症状保存半Lagrangian(SL)方法,该模型具有恒定或空间依赖的Knudsen编号。空间分解方法由大规模保守保守的节点不连续的Galerkin(NDG)方法进行,而僵硬的放松期的暂时分解则通过精确准确的对角隐含的龙格-库塔(DIRK)方法及其特点来实现。对于DIRK方法的无症状精确性(AAA)实施额外命令条件,如果这些方法与解决BGK模型的半Lagrangian算法相结合。在控制运输步骤中的数字分解时增加了一个本地最大原则保存限制(LMPP) 。由于SLL和时间分解的隐含性质,时间缓冲限制松了,从明确处理源术语的Eulerian框架中要大得多。为了核实高顺序的AAAA、效率和冲击性,进行了广泛的数字测试。

0
下载
关闭预览

相关内容

【干货书】数值Python计算,Numerical Python,709页pdf
专知会员服务
112+阅读 · 2021年5月30日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月27日
VIP会员
相关VIP内容
【干货书】数值Python计算,Numerical Python,709页pdf
专知会员服务
112+阅读 · 2021年5月30日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员