For effective planning and management of water resources and implementation of the related strategies, it is important to ensure proper estimation of evaporation losses, especially in regions that are prone to drought. Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process. As such, evaporation is a highly non-linear, non-stationary process, and can be difficult to be modeled based on climatic factors, especially in different agro-climatic conditions. The aim of this study, therefore, is to investigate the feasibility of several machines learning (ML) models (conditional random forest regression, Multivariate Adaptive Regression Splines, Bagged Multivariate Adaptive Regression Splines, Model Tree M5, K- nearest neighbor, and the weighted K- nearest neighbor) for modeling the monthly pan evaporation estimation. This study proposes the development of newly explored ML models for modeling evaporation losses in three different locations over the Iraq region based on the available climatic data in such areas. The evaluation of the performance of the proposed model based on various evaluation criteria showed the capability of the proposed weighted K- nearest neighbor model in modeling the monthly evaporation losses in the studies areas with better accuracy when compared with the other existing models used as a benchmark in this study.


翻译:对水资源的有效规划和管理以及相关战略的执行而言,必须确保适当估计蒸发损失,特别是在易发生干旱的地区。气候因素的变化,如温度、风速、阳光时间、湿度和太阳辐射的变化,可对蒸发过程产生重大影响。因此,蒸发是一个高度非线性、非静止的过程,难以根据气候因素进行模型化,特别是在不同的农业气候条件下。因此,这项研究的目的是调查若干机器学习模型(有条件随机森林回归、多变适应性回退流流流流线、堵塞多变回流流流流、模型M5、K-最近的邻居和加权K-最近的邻居)的可行性,以模拟月度蒸发估计。这项研究的目的是根据这些地区现有的气候数据,调查若干机械学习模型(ML)的可行性(有条件随机森林回归、多变适应性回流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流变变变变变变变变变变变和回流流流流流流、多变变流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流回回流流流流流流流流流流流流流流流流流流流流流流流流流流流流、潮流流流流流

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员