One possible way of making thermal processing controllable is to gather real-time information on the product's current state. Often, sensory equipment cannot capture all relevant information easily or at all. Digital Twins close this gap with virtual probes in real-time simulations, synchronized with the process. This paper proposes a physics-based, data-driven Digital Twin framework for autonomous food processing. We suggest a lean Digital Twin concept that is executable at the device level, entailing minimal computational load, data storage, and sensor data requirements. This study focuses on a parsimonious experimental design for training non-intrusive reduced-order models (ROMs) of a thermal process. A correlation ($R=-0.76$) between a high standard deviation of the surface temperatures in the training data and a low root mean square error in ROM testing enables efficient selection of training data. The mean test root mean square error of the best ROM is less than 1 Kelvin (0.2 % mean average percentage error) on representative test sets. Simulation speed-ups of Sp $\approx$ 1.8E4 allow on-device model predictive control. The proposed Digital Twin framework is designed to be applicable within the industry. Typically, non-intrusive reduced-order modeling is required as soon as the modeling of the process is performed in software, where root-level access to the solver is not provided, such as commercial simulation software. The data-driven training of the reduced-order model is achieved with only one data set, as correlations are utilized to predict the training success a priori.
翻译:实现热处理控制的一种可能方式是收集产品当前状态的实时信息。 通常, 感官设备无法轻易或完全获取所有相关信息。 数字双胞胎在实时模拟中用虚拟探测器缩小这一差距, 与过程同步。 本文提出一个基于物理的、 数据驱动的数字双型框架, 用于自主食品处理。 我们建议了一个在设备一级可以执行的精度数字双型概念, 导致最小的计算负荷、 数据储存和传感器数据要求。 本研究的重点是为培训非侵入性减少型模型( ROM) 热进程进行简单化的实验设计。 培训数据在实时模拟中, 地面温度的高标准偏差和ROM测试中低根平均平方差之间, 使得能够高效地选择培训数据。 在有代表性的测试组中, 平均比例错误小于1 Kelvin (0. 2 % 平均百分比错误) 。 模拟快速提升 Sp $\ appropproxx$ 1. 8E4 允许在模拟模拟中进行不干扰性模拟模拟的模拟性模拟性模拟比值分析。 之前, 正在设计一个数字框架, 进行简化数据控制, 。 正在作为常规操作,, 正在使用, 进行这种操作, 正在使用, 简化, 正在使用, 用于 简化 常规 常规 常规 常规 常规, 用于 常规 常规 常规, 常规,, 操作, 操作 。