Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to $l_{\infty}$-perturbation. Previous works defined the notion of $r$-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is $r$-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy. The code for the experiments is available at https://github.com/yangarbiter/interpretable-robust-trees .
翻译:最近的研究已经认识到,可解释性和稳健性是可靠分类的基本特性。 奇怪的是,从经验上看,稳健性和可解释性之间有一种联系,但是其背后的理论推理仍然遥不可及。 在本文中,我们严格调查了这一联系。 具体地说,我们侧重于使用决策树的解释和对$l ⁇ infty}$- perubilation的稳健性。 以前的著作将美元分离的概念界定为稳健性的充分条件。 我们证明,如果数据是美元分离的,树的大小上下下限是明显的。 然后我们表明,在数据线性分离时,有可能对面积进行更严格的约束。 我们为第一个算法提供了在决策树的稳健性、可解释性和准确性两方面的可证实的保证。 实验证实,我们的算法产分解器既可解释又稳健又精确。 实验的代码可以在 https://github.com/yangarbiter/interprept-robust-tees查阅。