Information Extraction (IE) researchers are mapping tasks to Question Answering (QA) in order to leverage existing large QA resources, and thereby improve data efficiency. Especially in template extraction (TE), mapping an ontology to a set of questions can be more time-efficient than collecting labeled examples. We ask whether end users of TE systems can design these questions, and whether it is beneficial to involve an NLP practitioner in the process. We compare questions to other ways of phrasing natural language prompts for TE. We propose a novel model to perform TE with prompts, and find it benefits from questions over other styles of prompts, and that they do not require an NLP background to author.
翻译:信息提取(IE)研究人员正在对问题解答(QA)进行绘图任务,以便利用现有的大型质量解答资源,从而提高数据效率。 特别是在模板提取(TE)方面,将本体学绘图到一组问题比收集贴标签的例子更具有时间效率。 我们问TE系统的终端用户能否设计这些问题,以及让NLP从业人员参与这一过程是否有益。 我们将问题与其他为TE解释自然语言提示的方法进行比较。 我们提出了一个新的模型,用提示来进行TE,发现它从其他提示类型的问题中受益,他们不需要给作者提供NLP背景。