Normalizing flow models have risen as a popular solution to the problem of density estimation, enabling high-quality synthetic data generation as well as exact probability density evaluation. However, in contexts where individuals are directly associated with the training data, releasing such a model raises privacy concerns. In this work, we propose the use of normalizing flow models that provide explicit differential privacy guarantees as a novel approach to the problem of privacy-preserving density estimation. We evaluate the efficacy of our approach empirically using benchmark datasets, and we demonstrate that our method substantially outperforms previous state-of-the-art approaches. We additionally show how our algorithm can be applied to the task of differentially private anomaly detection.


翻译:标准化的流量模型已逐渐成为解决密度估计问题的流行办法,使高质量的合成数据生成和准确的概率密度评估成为了大众的解决方案。然而,在个人与培训数据直接相关的情况下,发布这种模型会引起隐私问题。在这项工作中,我们提议使用标准化的流量模型,提供明确的差异隐私保障,作为解决隐私保护密度估算问题的新办法。我们用基准数据集对我们的方法进行实证评估,并证明我们的方法大大优于以往最先进的方法。我们还展示了如何将我们的算法应用于差异化的私人异常检测任务。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员