Conservation and consistency are fundamental properties of discretizations of systems of hyperbolic conservation laws. Here, these concepts are extended to the realm of iterative methods by formally defining locally conservative and flux consistent iterations. These concepts are of both theoretical and practical importance: Based on recent work by the authors, it is shown that pseudo-time iterations using explicit Runge-Kutta methods are locally conservative but not necessarily flux consistent. An extension of the Lax-Wendroff theorem is presented, revealing convergence towards weak solutions of a temporally retarded system of conservation laws. Each equation is modified in the same way, namely by a particular scalar factor multiplying the spatial flux terms. A technique for enforcing flux consistency, and thereby recovering convergence, is presented. Further, local conservation is established for all Krylov subspace methods, with and without restarts, and for Newton's method under certain assumptions on the discretization. Thus it is shown that Newton-Krylov methods are locally conservative, although not necessarily flux consistent. Numerical experiments with the 2D compressible Euler equations corroborate the theoretical results. Further numerical investigations of the impact of flux consistency on Newton-Krylov methods indicate that its effect is case dependent, and diminishes as the number of iterations grow.
翻译:保存和一致性是双曲保护法系统离散的基本特性。 这里, 这些概念通过正式定义本地保守和通量一致的迭代法, 扩展至迭代方法领域。 这些概念具有理论和实践重要性: 根据作者最近的工作, 显示使用明确的龙格- 库塔方法的假时间迭代在本地是保守的, 但不一定是通量的一致。 Lax- Wendroff 定理的延伸显示, 向暂时缓冲的保护法体系的薄弱解决方案的趋同。 每个等式都以同样的方式修改, 即用一个特定的变异系数乘以空间通量条件。 提出了一种执行通量一致性的方法, 从而恢复趋同。 此外, 对所有 Krylov 子空间方法, 使用或不重新启用, 以及 牛顿 方法在离散化的某些假设下, 都建立了本地保护。 因此, 牛顿- 克利夫定定律方法是本地保守的, 虽然不一定通融。 数值实验与 2D 硬度 Euler 等方公式的数值实验以证实理论结果。 进一步的数值调查显示, 牛顿 增长 的一致性研究显示, 的趋同性 。