A population-level analysis is proposed to address data sparsity when building predictive models for engineering infrastructure. Utilising an interpretable hierarchical Bayesian approach and operational fleet data, domain expertise is naturally encoded (and appropriately shared) between different sub-groups, representing (i) use-type, (ii) component, or (iii) operating condition. Specifically, domain expertise is exploited to constrain the model via assumptions (and prior distributions) allowing the methodology to automatically share information between similar assets, improving the survival analysis of a truck fleet and power prediction in a wind farm. In each asset management example, a set of correlated functions is learnt over the fleet, in a combined inference, to learn a population model. Parameter estimation is improved when sub-fleets are allowed to share correlated information at different levels in the hierarchy. In turn, groups with incomplete data automatically borrow statistical strength from those that are data-rich. The statistical correlations enable knowledge transfer via Bayesian transfer learning, and the correlations can be inspected to inform which assets share information for which effect (i.e. parameter). Successes in both case studies demonstrate the wide applicability in practical infrastructure monitoring, since the approach is naturally adapted between interpretable fleet models of different in-situ examples.
翻译:提议进行人口层面分析,以便在建立工程基础设施预测模型时解决数据偏僻问题; 利用可解释的贝耶斯等级方法和操作船队数据,在代表(一) 使用类型、(二) 组成部分或(三) 运作条件的不同分组之间自然地编码(和适当分享)域专门知识,具体地说,利用域专门知识限制模型,办法是假设(和先前的分配),使类似资产能够自动共享信息,改进卡车车队的生存分析和风力农场的电力预测; 在每个资产管理实例中,通过综合推断,在车队中学习一套相互关联的功能,学习人口模型; 当允许分级分组在不同级别共享相关信息时,参数估计会得到改善; 反过来,数据不完整的小组自动借用数据丰富数据的统计力量,使通过Bayesian转移学习知识转移,以及可以检查相关关系,以告知哪些资产共享信息,从而产生效果(参数)。 两种案例研究的延续性都表明,在实际基础设施监测中,由于可以自然地解释不同的例子,因此,在实际基础设施监测中可以广泛适用。