Differential networks (DN) are important tools for modeling the changes in conditional dependencies between multiple samples. A Bayesian approach for estimating DNs, from the classical viewpoint, is introduced with a computationally efficient threshold selection for graphical model determination. The algorithm separately estimates the precision matrices of the DN using the Bayesian adaptive graphical lasso procedure. Synthetic experiments illustrate that the Bayesian DN performs exceptionally well in numerical accuracy and graphical structure determination in comparison to state-of-the-art methods. The proposed method is applied to South African COVID-$19$ data to investigate the change in DN structure between various phases of the pandemic.


翻译:不同网络(DN)是模拟多种样本之间有条件依赖性变化的重要工具。从古典观点看,采用巴伊西亚估算DN的方法,采用计算高效的阈值来确定图形模型。算法使用Bayesian适应性图形拉索程序分别估算DN的精确矩阵。合成实验表明,与最新方法相比,Bayesian DN在数字准确性和图形结构确定方面表现得特别好。拟议方法适用于南非COVID-19亿美元的数据,以调查该流行病不同阶段之间DN结构的变化。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员