This article proposes modifications of the Parareal algorithm for its application to higher index differential algebraic equations (DAEs). It is based on the idea of applying the algorithm to only the differential components of the equation and the computation of corresponding consistent initial conditions later on. For differential algebraic equations with a special structure as e.g. given in flux-charge modified nodal analysis, it is shown that the usage of the implicit Euler method as a time integrator suffices for the Parareal algorithm to converge. Both versions of the Parareal method are applied to numerical examples of nonlinear index 2 differential algebraic equations.
翻译:本条提议修改准数运算法,以将其应用于更高的指数差分代数方程式(DAEs),其依据是将算法仅适用于方程式的不同组成部分以及随后相应的一致初始条件的计算。对于具有特殊结构的差分代数方程式,例如,在通量充电修改节点分析中给出的特殊结构,可以证明,使用隐含的电动法作为时间集成器就足以使参数差分代数算法趋同。两种版本的参数法都适用于非线性指数2差异代数方程的数字示例。