This paper proposes a procedural content generator which evolves Minecraft buildings according to an open-ended and intrinsic definition of novelty. To realize this goal we evaluate individuals' novelty in the latent space using a 3D autoencoder, and alternate between phases of exploration and transformation. During exploration the system evolves multiple populations of CPPNs through CPPN-NEAT and constrained novelty search in the latent space (defined by the current autoencoder). We apply a set of repair and constraint functions to ensure candidates adhere to basic structural rules and constraints during evolution. During transformation, we reshape the boundaries of the latent space to identify new interesting areas of the solution space by retraining the autoencoder with novel content. In this study we evaluate five different approaches for training the autoencoder during transformation and its impact on populations' quality and diversity during evolution. Our results show that by retraining the autoencoder we can achieve better open-ended complexity compared to a static model, which is further improved when retraining using larger datasets of individuals with diverse complexities.
翻译:本文提出一个程序内容生成器,根据对新事物的开放和内在定义来发展矿工建筑。为了实现这一目标,我们使用3D自动编码器来评估个人在潜层空间的新颖之处,以及勘探和改造阶段之间的交替。在探索期间,该系统通过CPPN-NEAT和限制对潜层空间(由目前的自动编码器所定义)进行新颖搜索,使CPPN的多组群形成。我们运用一套修理和制约功能来确保候选人在进化过程中遵守基本的结构规则和制约。在转型期间,我们通过用新内容对自动编码器进行再培训,重新划定潜在空间的界限,以确定解决方案空间中新的有趣领域。在本研究中,我们评估了在变异过程中培训自动编码器的五种不同方法及其对人口质量和多样性的影响。我们的结果显示,通过再培训自动编码器,我们可以实现比静态模型更开放的复杂程度,在使用复杂程度更大的数据组进行再培训时会进一步改进。