We propose a motion forecasting model called BANet, which means Boundary-Aware Network, and it is a variant of LaneGCN. We believe that it is not enough to use only the lane centerline as input to obtain the embedding features of the vector map nodes. The lane centerline can only provide the topology of the lanes, and other elements of the vector map also contain rich information. For example, the lane boundary can provide traffic rule constraint information such as whether it is possible to change lanes which is very important. Therefore, we achieved better performance by encoding more vector map elements in the motion forecasting model.We report our results on the 2022 Argoverse2 Motion Forecasting challenge and rank 1st on the test leaderboard.
翻译:我们提议了一个名为“Banet”的运动预测模型,即“边界-软件网络”,它是LaneGCN的变体。我们认为,仅仅将航道中枢线作为输入以获得矢量地图节点的嵌入特征是不够的。航道中枢线只能提供航道的地形学,而矢量地图的其他元素也包含丰富的信息。例如,航道边界可以提供交通规则限制信息,例如能否改变非常重要的航道。因此,我们通过在运动预测模型中编码更多的矢量地图元素,取得了更好的业绩。我们报告了2022年阿尔戈弗瑟2运动预测挑战的结果,并在试验领头板上排名第一。