It is needed to solve generalized eigenvalue problems (GEP) in many applications, such as the numerical simulation of vibration analysis, quantum mechanics, electronic structure, etc. The subspace iteration is a kind of widely used algorithm to solve eigenvalue problems. To solve the generalized eigenvalue problem, one kind of subspace iteration method, Chebyshev-Davidson algorithm, is proposed recently. In Chebyshev-Davidson algorithm, the Chebyshev polynomial filter technique is incorporated in the subspace iteration. In this paper, based on Chebyshev-Davidson algorithm, a new subspace iteration algorithm is constructed. In the new algorithm, the Chebyshev filter and inexact Rayleigh quotient iteration techniques are combined together to enlarge the subspace in the iteration. Numerical results of a vibration analysis problem show that the number of iteration and computing time of the proposed algorithm is much less than that of the Chebyshev-Davidson algorithm and some typical GEP solution algorithms. Furthermore, the new algorithm is more stable and reliable than the Chebyshev-Davidson algorithm in the numerical results.
翻译:在很多应用中,例如振动分析、量子力学、电子结构等的数值模拟、量子力学、电子结构等的数值模拟等,需要解决通用的乙基值问题。亚空间迭代是一种广泛使用的算法,以解决乙基值问题。为了解决普遍化的乙基值问题,最近提出了一种子空间迭代方法,即Chebyshev-Davidson算法。在Chebyshev-Davidson算法中,切比谢夫-达维德森算法和一些典型的GEPD解算法中,切比谢夫过滤法和不完全的Raylegy Parkitent 代谢化技术结合在一起,以扩大循环中的亚空间。在振动分析问题中得出的数值结果表明,拟议算法的转换和计算时间远远低于Chebyshev-Davidson算法和一些典型的GEPD解算法。此外,在新的算法中,新的算法更稳定,更可靠。