We study numerically in the time domain the linearized gravitational waves emitted from a plunge into a nearly extremal Kerr black hole by solving the inhomogeneous Teukolsky equation. We consider spinning black holes for which the specific spin angular momentum $a/M=1-\epsilon$, and we consider values of $\epsilon\geq 10^{-6}$. We find an effective transient behavior for the quasi-normal ringdown: the early phase of the quasi-normal ringdown is governed by a decay according to inverse time, with frequency equaling twice the black hole's horizon frequency. The smaller $\epsilon$ the later the transition from this transient inverse time decay to exponential decay. Such sources, if exist, may be interesting potential sources for terrestrial or space borne gravitational wave observatories.
翻译:我们在时间范围内通过解开不相容的 Teukolsky 方程式,对从倾入近极限凯尔黑洞中释放出的线性引力波进行数值研究。我们考虑旋转黑洞,为此,特定的旋转角动力为$a/M=1-\epsilon$,我们考虑美元/M=1-\epsilon$的值,我们考虑的是美元=10 ⁇ -6$的值。我们发现半正常环击的有效瞬时行为:准正常环击的早期阶段由反时间的衰变调节,频率等于黑洞地平线频率的两倍。较小的 $\ epslon$, 后期从这一逆向反向衰减速的转动。这些源,如果存在的话,可能是陆地或空间承载引力波观测站的有趣潜在来源。