Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally efficient. To combine both, we propose the dual path network (DPN). It consists of a signal path of DSP operations that recover the signal, and a feature path of neural networks that estimate the unknown transmit parameters. By interconnecting the paths over several recovery stages, later stages benefit from the recovered signals and reuse all the previously extracted features. The proposed design is demonstrated to provide 5% improvement in modulation classification compared to alternative designs lacking either feature sharing or access to recovered signals. The estimation results of DPN along with its blind decoding performance are shown to outperform a blind signal processing algorithm for BPSK and QPSK on a simulated dataset. An over-the-air software-defined-radio capture was used to verify DPN results at high SNRs. DPN design can process variable length inputs and is shown to outperform relying on fixed length inputs with prediction averaging on longer signals by up to 15% in modulation classification.


翻译:盲目解码信号要求估算其未知传输参数,补偿无线频道障碍,并确定调制类型。虽然深层次学习可以解决复杂问题,但数字信号处理(DSP)是可以解释的,并且可以提高计算效率。要将两者结合起来,我们提议双轨路径网络。它包括一个恢复信号的DSP操作信号路径,以及一个估计未知传输参数的神经网络特征路径。通过将若干恢复阶段的路径相互连接,后期阶段从回收的信号中受益,并重新使用所有先前提取的功能。拟议的设计表明,与缺乏特征共享或获取已恢复信号的替代设计相比,在调制分类方面提供了5%的改进。DPN及其盲解码性能的估算结果显示,在模拟数据集中超越了BPSK和QPSK的盲信号处理算法。在高空软件定义的接收中,用于在高级SRIS中核实DPN的结果。 DPN设计可以处理可变长的输入,并显示在使用固定长度的输入到15年平均信号的预测中显示,以15年的预测值为基础。

0
下载
关闭预览

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
6+阅读 · 2019年11月14日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员