Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages over classical methods. Nevertheless, modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large-volume data. As such, to better exert the superiority of VQAs, it is of great significance to improve their runtime efficiency. Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue. Specifically, in QUDIO, a classical central server partitions the learning problem into multiple subproblems and allocate them to multiple local nodes where each of them consists of a quantum processor and a classical optimizer. During the training procedure, all local nodes proceed parallel optimization and the classical server synchronizes optimization information among local nodes timely. In doing so, we prove a sublinear convergence rate of QUDIO in terms of the number of global iteration under the ideal scenario, while the system imperfection may incur divergent optimization. Numerical results on standard benchmarks demonstrate that QUDIO can surprisingly achieve a superlinear runtime speedup with respect to the number of local nodes. Our proposal can be readily mixed with other advanced VQAs-based techniques to narrow the gap between the state of the art and applications with quantum advantage.
翻译:变化量子算法(VQAs)有可能利用近期量子机器来获得某些优于经典方法的计算优势。然而,现代量子算法(VQAs)存在繁琐的计算间接费用,受到使用单独量子处理器处理大量数据的传统的阻碍。因此,为了更好地发挥VQA的优势,提高运行时间效率非常重要。在这里,我们设计了一个高效分布式优化计划(称为QUDIO)来解决这个问题。具体来说,在QUDIO,一个典型的中央服务器将学习问题分为多个子问题,并将其分配给多个本地节点,其中每个节点都由量子处理器和经典优化器组成。在培训过程中,所有本地节点都同时进行优化,经典服务器及时将本地节点的信息优化。在这样做时,我们证明QUDIO在理想情景下的全球循环率方面有一个亚线性趋一致率,而系统可能出现不完善。在标准基准上,每个节点的数值结果显示QUDIO应用中每个由量子处理的量子速度技术组成。令人惊讶地实现超时,而快速的超超视视高。