Spinal codes are known to be capacity achieving over both the additive white Gaussian noise (AWGN) channel and the binary symmetric channel (BSC). Over wireless channels, Spinal encoding can also be regarded as an adaptive-coded-modulation (ACM) technique due to its rateless property, which fits it with mobile communications. Due to lack of tight analysis on error probability of Spinal codes, optimization of transmission scheme using Spinal codes has not been fully explored. In this work, we firstly derive new tight upper bounds of the frame error rate (FER) of Spinal codes for both the AWGN channel and the BSC in the finite block-length (FBL) regime. Based on the derived upper bounds, we then design the optimal transmission scheme. Specifically, we formulate a rate maximization problem as a nonlinear integer programming problem, and solve it by an iterative algorithm for its dual problem. As the optimal solution exhibits an incremental-tail-transmission pattern, we propose an improved transmission scheme for Spinal codes. Moreover, we develop a bubble decoding with memory (BD-M) algorithm to reduce the decoding time complexity without loss of rate performance. The improved transmission scheme at the transmitter and the BD-M algorithm at the receiver jointly constitute an "encoding-decoding" system of Spinal codes. Simulation results demonstrate that it can improve both the rate performance and the decoding throughput of Spinal codes.
翻译:已知的脊柱码是在添加白高斯噪音(AWGN)频道和二进制对称信道(BSC)上达到的累加白高斯噪音(AWGN)频道和二进制对称信道(BSC)的能力。在无线频道上,Spinal编码也可以被视为适应性编码调制(ACM)技术,因为其属性无速率,适合移动通信。由于缺乏对Spinal编码误差概率的严格分析,因此没有充分探索使用Spinal编码的传输计划。在这项工作中,我们首先为AWGN频道和有限区块长度(FBL)制度中的BSC框架错误率(FER)提出了新的紧凑的上限。基于衍生的上限,我们随后设计了最佳传输计划。具体地说,我们将一个标准最大化问题作为非线性组合组合编程编程问题,通过一个迭代算法来解决其双重问题。由于最佳解决办法显示一种递增-尾传输模式,我们建议改进Spinal代码的传输计划。此外,我们开发一个带有内存(B-D-M)的浮解的Slial-deal-dealdeal dal dal dal dable dalb dable dassulding squlding 计划,从而在不改进了“Slationalking daldaldaldaldaldald daldaldaldaldaldaldaldaldaldaldaldaldorgaldaldaldaldaldald ” 使Bxaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal daldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal