The famous no-cloning principle has been shown recently to enable a number of uncloneable functionalities. Here we address for the first time unkeyed quantum uncloneablity, via the study of a complexity-theoretic tool that enables a computation, but that is natively unkeyed: quantum advice. Remarkably, this is an application of the no-cloning principle in a context where the quantum states of interest are not chosen by a random process. We show the unconditional existence of promise problems admitting uncloneable quantum advice, and the existence of languages with uncloneable advice, assuming the feasibility of quantum copy-protecting certain functions. Along the way, we note that state complexity classes, introduced by Rosenthal and Yuen (ITCS 2022) - which concern the computational difficulty of synthesizing sequences of quantum states - can be naturally generalized to obtain state cloning complexity classes. We make initial observations on these classes, notably obtaining a result analogous to the existence of undecidable problems. Our proof technique establishes the existence of ingenerable sequences of finite bit strings - essentially meaning that they cannot be generated by any uniform circuit family. We then prove a generic result showing that the difficulty of accomplishing a computational task on uniformly random inputs implies its difficulty on any fixed, ingenerable sequence. We use this result to derandomize quantum cryptographic games that relate to cloning, and then incorporate a result of Kundu and Tan (arXiv 2022) to obtain uncloneable advice. Applying this two-step process to a monogamy-of-entanglement game yields a promise problem with uncloneable advice, and applying it to the quantum copy-protection of pseudorandom functions with super-logarithmic output lengths yields a language with uncloneable advice.


翻译:暂无翻译

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月23日
Diverse Offline Imitation Learning
Arxiv
0+阅读 · 2023年10月23日
Arxiv
0+阅读 · 2023年10月23日
Arxiv
0+阅读 · 2023年10月21日
Arxiv
0+阅读 · 2023年10月21日
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年10月23日
Diverse Offline Imitation Learning
Arxiv
0+阅读 · 2023年10月23日
Arxiv
0+阅读 · 2023年10月23日
Arxiv
0+阅读 · 2023年10月21日
Arxiv
0+阅读 · 2023年10月21日
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员