On-device machine learning enables the lightweight deployment of recommendation models in local clients, which reduces the burden of the cloud-based recommenders and simultaneously incorporates more real-time user features. Nevertheless, the cloud-based recommendation in the industry is still very important considering its powerful model capacity and the efficient candidate generation from the billion-scale item pool. Previous attempts to integrate the merits of both paradigms mainly resort to a sequential mechanism, which builds the on-device recommender on top of the cloud-based recommendation. However, such a design is inflexible when user interests dramatically change: the on-device model is stuck by the limited item cache while the cloud-based recommendation based on the large item pool do not respond without the new re-fresh feedback. To overcome this issue, we propose a meta controller to dynamically manage the collaboration between the on-device recommender and the cloud-based recommender, and introduce a novel efficient sample construction from the causal perspective to solve the dataset absence issue of meta controller. On the basis of the counterfactual samples and the extended training, extensive experiments in the industrial recommendation scenarios show the promise of meta controller in the device-cloud collaboration.
翻译:安装机上学习使当地客户能够轻量地部署建议模式,从而减轻基于云的建议者的负担,同时纳入更实时的用户特点。然而,考虑到其强大的模型能力以及10亿规模项目集合中高效的候选者生成,基于云的建议行业中基于云的建议仍然非常重要。以前试图将两种模式的优点结合起来的做法主要采用一个顺序机制,该机制在基于云的建议之上建立基于源的建议者。然而,当用户兴趣发生重大变化时,这种设计是不可变的:基于大项目集合的基于云的建议因有限项目缓存而停滞不前,而基于大项目集合的基于云的建议如果没有新的反馈则无法作出反应。为了克服这一问题,我们提议一个元控制器,以动态方式管理基于源的建议者和基于云的建议者之间的协作,并从因果关系的角度引入一个新的高效样本构建,以解决基于元控制器的数据集缺失问题。根据反事实样本和扩展的培训,在工业建议情景中进行的广泛实验,显示了设备终端合作中元控制器的前景。